Python tudo sobre Typing
January 05, 2020
PEP 484, which provides a specification about what a type system should look like in Python3, introduced the concept of type hints. Moreover, to better understand the type hints design philosophy, it is crucial to read PEP 483 that would be helpful to aid a pythoneer to understand reasons why Python introduce a type system. The main goal of this cheat sheet is to show some common usage about type hints in Python3.
Without type check
def fib(n):
a, b = 0, 1
for _ in range(n):
yield a
b, a = a + b, b
print([n for n in fib(3.6)])
output:
# errors will not be detected until runtime
$ python fib.py
Traceback (most recent call last):
File "fib.py", line 8, in <module>
print([n for n in fib(3.5)])
File "fib.py", line 8, in <listcomp>
print([n for n in fib(3.5)])
File "fib.py", line 3, in fib
for _ in range(n):
TypeError: 'float' object cannot be interpreted as an integer
With type check
# give a type hint
from typing import Generator
def fib(n: int) -> Generator:
a: int = 0
b: int = 1
for _ in range(n):
yield a
b, a = a + b, b
print([n for n in fib(3.6)])
output:
# errors will be detected before running
$ mypy --strict fib.py
fib.py:12: error: Argument 1 to "fib" has incompatible type "float"; expected "int"
Basic types
import io
import re
from collections import deque, namedtuple
from typing import (
Dict,
List,
Tuple,
Set,
Deque,
NamedTuple,
IO,
Pattern,
Match,
Text,
Optional,
Sequence,
Iterable,
Mapping,
MutableMapping,
Any,
)
# without initializing
x: int
# any type
y: Any
y = 1
y = "1"
# built-in
var_int: int = 1
var_str: str = "Hello Typing"
var_byte: bytes = b"Hello Typing"
var_bool: bool = True
var_float: float = 1.
var_unicode: Text = u'\u2713'
# could be none
var_could_be_none: Optional[int] = None
var_could_be_none = 1
# collections
var_set: Set[int] = {i for i in range(3)}
var_dict: Dict[str, str] = {"foo": "Foo"}
var_list: List[int] = [i for i in range(3)]
var_Tuple: Tuple = (1, 2, 3)
var_deque: Deque = deque([1, 2, 3])
var_nametuple: NamedTuple = namedtuple('P', ['x', 'y'])
# io
var_io_str: IO[str] = io.StringIO("Hello String")
var_io_byte: IO[bytes] = io.BytesIO(b"Hello Bytes")
var_io_file_str: IO[str] = open(__file__)
var_io_file_byte: IO[bytes] = open(__file__, 'rb')
# re
p: Pattern = re.compile("(https?)://([^/\r\n]+)(/[^\r\n]*)?")
m: Optional[Match] = p.match("https://www.python.org/")
# duck types: list-like
var_seq_list: Sequence[int] = [1, 2, 3]
var_seq_tuple: Sequence[int] = (1, 2, 3)
var_iter_list: Iterable[int] = [1, 2, 3]
var_iter_tuple: Iterable[int] = (1, 2, 3)
# duck types: dict-like
var_map_dict: Mapping[str, str] = {"foo": "Foo"}
var_mutable_dict: MutableMapping[str, str] = {"bar": "Bar"}
Functions
from typing import Generator, Callable
# function
def gcd(a: int, b: int) -> int:
while b:
a, b = b, a % b
return a
# callback
def fun(cb: Callable[[int, int], int]) -> int:
return cb(55, 66)
# lambda
f: Callable[[int], int] = lambda x: x * 2
Classes
from typing import ClassVar, Dict, List
class Foo:
x: int = 1 # instance variable. default = 1
y: ClassVar[str] = "class var" # class variable
def __init__(self) -> None:
self.i: List[int] = [0]
def foo(self, a: int, b: str) -> Dict[int, str]:
return {a: b}
foo = Foo()
foo.x = 123
print(foo.x)
print(foo.i)
print(Foo.y)
print(foo.foo(1, "abc"))
Generator
from typing import Generator
# Generator[YieldType, SendType, ReturnType]
def fib(n: int) -> Generator[int, None, None]:
a: int = 0
b: int = 1
while n > 0:
yield a
b, a = a + b, b
n -= 1
g: Generator = fib(10)
i: Iterator[int] = (x for x in range(3))
Asynchronous Generator
import asyncio
from typing import AsyncGenerator, AsyncIterator
async def fib(n: int) -> AsyncGenerator:
a: int = 0
b: int = 1
while n > 0:
await asyncio.sleep(0.1)
yield a
b, a = a + b, b
n -= 1
async def main() -> None:
async for f in fib(10):
print(f)
ag: AsyncIterator = (f async for f in fib(10))
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
Context Manager
from typing import ContextManager, Generator, IO
from contextlib import contextmanager
@contextmanager
def open_file(name: str) -> Generator:
f = open(name)
yield f
f.close()
cm: ContextManager[IO] = open_file(__file__)
with cm as f:
print(f.read())
Asynchronous Context Manager
import asyncio
from typing import AsyncContextManager, AsyncGenerator, IO
from contextlib import asynccontextmanager
# need python 3.7 or above
@asynccontextmanager
async def open_file(name: str) -> AsyncGenerator:
await asyncio.sleep(0.1)
f = open(name)
yield f
await asyncio.sleep(0.1)
f.close()
async def main() -> None:
acm: AsyncContextManager[IO] = open_file(__file__)
async with acm as f:
print(f.read())
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
Avoid None
access
import re
from typing import Pattern, Dict, Optional
# like c++
# std::regex url("(https?)://([^/\r\n]+)(/[^\r\n]*)?");
# std::regex color("^#?([a-f0-9]{6}|[a-f0-9]{3})$");
url: Pattern = re.compile("(https?)://([^/\r\n]+)(/[^\r\n]*)?")
color: Pattern = re.compile("^#?([a-f0-9]{6}|[a-f0-9]{3})$")
x: Dict[str, Pattern] = {"url": url, "color": color}
y: Optional[Pattern] = x.get("baz", None)
print(y.match("https://www.python.org/"))
output:
$ mypy --strict foo.py
foo.py:15: error: Item "None" of "Optional[Pattern[Any]]" has no attribute "match"
Positional-only arguments
# define arguments with names beginning with __
def fib(__n: int) -> int: # positional only arg
a, b = 0, 1
for _ in range(__n):
b, a = a + b, b
return a
def gcd(*, a: int, b: int) -> int: # keyword only arg
while b:
a, b = b, a % b
return a
print(fib(__n=10)) # error
print(gcd(10, 5)) # error
output:
mypy --strict foo.py
foo.py:1: note: "fib" defined here
foo.py:14: error: Unexpected keyword argument "__n" for "fib"
foo.py:15: error: Too many positional arguments for "gcd"
Multiple return values
from typing import Tuple, Iterable, Union
def foo(x: int, y: int) -> Tuple[int, int]:
return x, y
# or
def bar(x: int, y: str) -> Iterable[Union[int, str]]:
# XXX: not recommend declaring in this way
return x, y
a: int
b: int
a, b = foo(1, 2) # ok
c, d = bar(3, "bar") # ok
Union[Any, None] == Optional[Any]
from typing import List, Union
def first(l: List[Union[int, None]]) -> Union[int, None]:
return None if len(l) == 0 else l[0]
first([None])
# equal to
from typing import List, Optional
def first(l: List[Optional[int]]) -> Optional[int]:
return None if len(l) == 0 else l[0]
first([None])
Be careful of Optional
from typing import cast, Optional
def fib(n):
a, b = 0, 1
for _ in range(n):
b, a = a + b, b
return a
def cal(n: Optional[int]) -> None:
print(fib(n))
cal(None)
output:
# mypy will not detect errors
$ mypy foo.py
Explicitly declare
from typing import Optional
def fib(n: int) -> int: # declare n to be int
a, b = 0, 1
for _ in range(n):
b, a = a + b, b
return a
def cal(n: Optional[int]) -> None:
print(fib(n))
output:
# mypy can detect errors even we do not check None
$ mypy --strict foo.py
foo.py:11: error: Argument 1 to "fib" has incompatible type "Optional[int]"; expected "int"
Be careful of casting
from typing import cast, Optional
def gcd(a: int, b: int) -> int:
while b:
a, b = b, a % b
return a
def cal(a: Optional[int], b: Optional[int]) -> None:
# XXX: Avoid casting
ca, cb = cast(int, a), cast(int, b)
print(gcd(ca, cb))
cal(None, None)
output:
# mypy will not detect type errors
$ mypy --strict foo.py
Forward references
Based on PEP 484, if we want to reference a type before it has been declared, we have to use string literal to imply that there is a type of that name later on in the file.
from typing import Optional
class Tree:
def __init__(
self, data: int,
left: Optional["Tree"], # Forward references.
right: Optional["Tree"]
) -> None:
self.data = data
self.left = left
self.right = right
There are some issues that mypy does not complain about Forward References. Get further information from Issue#948.
class A:
def __init__(self, a: A) -> None: # should fail
self.a = a
output:
$ mypy --strict type.py
$ echo $?
0
$ python type.py # get runtime fail
Traceback (most recent call last):
File "type.py", line 1, in <module>
class A:
File "type.py", line 2, in A
def __init__(self, a: A) -> None: # should fail
NameError: name 'A' is not defined
Postponed Evaluation of Annotations
New in Python 3.7
- PEP 563 - Postponed Evaluation of Annotations
Before Python 3.7
>>> class A:
... def __init__(self, a: A) -> None:
... self._a = a
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in A
NameError: name 'A' is not defined
After Python 3.7 (include 3.7)
>>> from __future__ import annotations
>>> class A:
... def __init__(self, a: A) -> None:
... self._a = a
...
Annotation can only be used within the scope which names have already existed. Therefore, forward reference does not support the case which names are not available in the current scope. Postponed evaluation of annotations will become the default behavior in Python 4.0.
Type alias
Like typedef
or using
in c/c++
#include <iostream>
#include <string>
#include <regex>
#include <vector>
typedef std::string Url;
template<typename T> using Vector = std::vector<T>;
int main(int argc, char *argv[])
{
Url url = "https://python.org";
std::regex p("(https?)://([^/\r\n]+)(/[^\r\n]*)?");
bool m = std::regex_match(url, p);
Vector<int> v = {1, 2};
std::cout << m << std::endl;
for (auto it : v) std::cout << it << std::endl;
return 0;
}
Type aliases are defined by simple variable assignments
import re
from typing import Pattern, List
# Like typedef, using in c/c++
# PEP 484 recommend capitalizing alias names
Url = str
url: Url = "https://www.python.org/"
p: Pattern = re.compile("(https?)://([^/\r\n]+)(/[^\r\n]*)?")
m = p.match(url)
Vector = List[int]
v: Vector = [1., 2.]
Define a NewType
Unlike alias, NewType
returns a separate type but is identical to the
original type at runtime.
from sqlalchemy import Column, String, Integer
from sqlalchemy.ext.declarative import declarative_base
from typing import NewType, Any
# check mypy #2477
Base: Any = declarative_base()
# create a new type
Id = NewType('Id', int) # not equal alias, it's a 'new type'
class User(Base):
__tablename__ = 'User'
id = Column(Integer, primary_key=True)
age = Column(Integer, nullable=False)
name = Column(String, nullable=False)
def __init__(self, id: Id, age: int, name: str) -> None:
self.id = id
self.age = age
self.name = name
# create users
user1 = User(Id(1), 62, "Guido van Rossum") # ok
user2 = User(2, 48, "David M. Beazley") # error
output:
$ python foo.py
$ mypy --ignore-missing-imports foo.py
foo.py:24: error: Argument 1 to "User" has incompatible type "int"; expected "Id"
Further reading:
Using TypeVar
as template
Like c++ template <typename T>
#include <iostream>
template <typename T>
T add(T x, T y) {
return x + y;
}
int main(int argc, char *argv[])
{
std::cout << add(1, 2) << std::endl;
std::cout << add(1., 2.) << std::endl;
return 0;
}
Python using TypeVar
from typing import TypeVar
T = TypeVar("T")
def add(x: T, y: T) -> T:
return x + y
add(1, 2)
add(1., 2.)
Using TypeVar
and Generic
as class template
Like c++ template <typename T> class
#include <iostream>
template<typename T>
class Foo {
public:
Foo(T foo) {
foo_ = foo;
}
T Get() {
return foo_;
}
private:
T foo_;
};
int main(int argc, char *argv[])
{
Foo<int> f(123);
std::cout << f.Get() << std::endl;
return 0;
}
Define a generic class in Python
from typing import Generic, TypeVar
T = TypeVar("T")
class Foo(Generic[T]):
def __init__(self, foo: T) -> None:
self.foo = foo
def get(self) -> T:
return self.foo
f: Foo[str] = Foo("Foo")
v: int = f.get()
output:
$ mypy --strict foo.py
foo.py:13: error: Incompatible types in assignment (expression has type "str", variable has type "int")
Scoping rules for TypeVar
TypeVar
used in different generic function will be inferred to be different types.
from typing import TypeVar
T = TypeVar("T")
def foo(x: T) -> T:
return x
def bar(y: T) -> T:
return y
a: int = foo(1) # ok: T is inferred to be int
b: int = bar("2") # error: T is inferred to be str
output:
$ mypy --strict foo.py
foo.py:12: error: Incompatible types in assignment (expression has type "str", variable has type "int")
TypeVar
used in a generic class will be inferred to be same types.
from typing import TypeVar, Generic
T = TypeVar("T")
class Foo(Generic[T]):
def foo(self, x: T) -> T:
return x
def bar(self, y: T) -> T:
return y
f: Foo[int] = Foo()
a: int = f.foo(1) # ok: T is inferred to be int
b: str = f.bar("2") # error: T is expected to be int
output:
$ mypy --strict foo.py
foo.py:15: error: Incompatible types in assignment (expression has type "int", variable has type "str")
foo.py:15: error: Argument 1 to "bar" of "Foo" has incompatible type "str"; expected "int"
TypeVar
used in a method but did not match any parameters which declare inGeneric
can be inferred to be different types.
from typing import TypeVar, Generic
T = TypeVar("T")
S = TypeVar("S")
class Foo(Generic[T]): # S does not match params
def foo(self, x: T, y: S) -> S:
return y
def bar(self, z: S) -> S:
return z
f: Foo[int] = Foo()
a: str = f.foo(1, "foo") # S is inferred to be str
b: int = f.bar(12345678) # S is inferred to be int
output:
$ mypy --strict foo.py
TypeVar
should not appear in body of method/function if it is unbound type.
from typing import TypeVar, Generic
T = TypeVar("T")
S = TypeVar("S")
def foo(x: T) -> None:
a: T = x # ok
b: S = 123 # error: invalid type
output:
$ mypy --strict foo.py
foo.py:8: error: Invalid type "foo.S"
Restricting to a fixed set of possible types
T = TypeVar('T', ClassA, ...)
means we create a type variable with a
value restriction.
from typing import TypeVar
# restrict T = int or T = float
T = TypeVar("T", int, float)
def add(x: T, y: T) -> T:
return x + y
add(1, 2)
add(1., 2.)
add("1", 2)
add("hello", "world")
output:
# mypy can detect wrong type
$ mypy --strict foo.py
foo.py:10: error: Value of type variable "T" of "add" cannot be "object"
foo.py:11: error: Value of type variable "T" of "add" cannot be "str"
TypeVar
with an upper bound
T = TypeVar('T', bound=BaseClass)
means we create a type variable
with an upper bound. The concept is similar to polymorphism in
c++.
#include <iostream>
class Shape {
public:
Shape(double width, double height) {
width_ = width;
height_ = height;
};
virtual double Area() = 0;
protected:
double width_;
double height_;
};
class Rectangle: public Shape {
public:
Rectangle(double width, double height)
:Shape(width, height)
{};
double Area() {
return width_ * height_;
};
};
class Triangle: public Shape {
public:
Triangle(double width, double height)
:Shape(width, height)
{};
double Area() {
return width_ * height_ / 2;
};
};
double Area(Shape &s) {
return s.Area();
}
int main(int argc, char *argv[])
{
Rectangle r(1., 2.);
Triangle t(3., 4.);
std::cout << Area(r) << std::endl;
std::cout << Area(t) << std::endl;
return 0;
}
Like c++, create a base class and TypeVar
which bounds to the base
class. Then, static type checker will take every subclass as type of
base class.
from typing import TypeVar
class Shape:
def __init__(self, width: float, height: float) -> None:
self.width = width
self.height = height
def area(self) -> float:
return 0
class Rectangle(Shape):
def area(self) -> float:
width: float = self.width
height: float = self.height
return width * height
class Triangle(Shape):
def area(self) -> float:
width: float = self.width
height: float = self.height
return width * height / 2
S = TypeVar("S", bound=Shape)
def area(s: S) -> float:
return s.area()
r: Rectangle = Rectangle(1, 2)
t: Triangle = Triangle(3, 4)
i: int = 5566
print(area(r))
print(area(t))
print(area(i))
output:
$ mypy --strict foo.py
foo.py:40: error: Value of type variable "S" of "area" cannot be "int"
@overload
Sometimes, we use Union
to infer that the return of a function has
multiple different types. However, type checker cannot distinguish which
type do we want. Therefore, following snippet shows that type checker
cannot determine which type is correct.
from typing import List, Union
class Array(object):
def __init__(self, arr: List[int]) -> None:
self.arr = arr
def __getitem__(self, i: Union[int, str]) -> Union[int, str]:
if isinstance(i, int):
return self.arr[i]
if isinstance(i, str):
return str(self.arr[int(i)])
arr = Array([1, 2, 3, 4, 5])
x:int = arr[1]
y:str = arr["2"]
output:
$ mypy --strict foo.py
foo.py:16: error: Incompatible types in assignment (expression has type "Union[int, str]", variable has type "int")
foo.py:17: error: Incompatible types in assignment (expression has type "Union[int, str]", variable has type "str")
Although we can use cast
to solve the problem, it cannot avoid typo
and cast
is not safe.
from typing import List, Union, cast
class Array(object):
def __init__(self, arr: List[int]) -> None:
self.arr = arr
def __getitem__(self, i: Union[int, str]) -> Union[int, str]:
if isinstance(i, int):
return self.arr[i]
if isinstance(i, str):
return str(self.arr[int(i)])
arr = Array([1, 2, 3, 4, 5])
x: int = cast(int, arr[1])
y: str = cast(str, arr[2]) # typo. we want to assign arr["2"]
output:
$ mypy --strict foo.py
$ echo $?
0
Using @overload
can solve the problem. We can declare the return type
explicitly.
from typing import Generic, List, Union, overload
class Array(object):
def __init__(self, arr: List[int]) -> None:
self.arr = arr
@overload
def __getitem__(self, i: str) -> str:
...
@overload
def __getitem__(self, i: int) -> int:
...
def __getitem__(self, i: Union[int, str]) -> Union[int, str]:
if isinstance(i, int):
return self.arr[i]
if isinstance(i, str):
return str(self.arr[int(i)])
arr = Array([1, 2, 3, 4, 5])
x: int = arr[1]
y: str = arr["2"]
output:
$ mypy --strict foo.py
$ echo $?
0
Based on PEP 484, the @overload
decorator just for type checker
only, it does not implement the real overloading like c++/java. Thus,
we have to implement one exactly non-@overload
function. At the
runtime, calling the @overload
function will raise
NotImplementedError
.
from typing import List, Union, overload
class Array(object):
def __init__(self, arr: List[int]) -> None:
self.arr = arr
@overload
def __getitem__(self, i: Union[int, str]) -> Union[int, str]:
if isinstance(i, int):
return self.arr[i]
if isinstance(i, str):
return str(self.arr[int(i)])
arr = Array([1, 2, 3, 4, 5])
try:
x: int = arr[1]
except NotImplementedError as e:
print("NotImplementedError")
output:
$ python foo.py
NotImplementedError
Stub Files
Stub files just like header files which we usually use to define our
interfaces in c/c++. In python, we can define our interfaces in the same
module directory or export MYPYPATH=${stubs}
First, we need to create a stub file (interface file) for module.
$ mkdir fib
$ touch fib/__init__.py fib/__init__.pyi
Then, define the interface of the function in __init__.pyi
and
implement the module.
# fib/__init__.pyi
def fib(n: int) -> int: ...
# fib/__init__.py
def fib(n):
a, b = 0, 1
for _ in range(n):
b, a = a + b, b
return a
Then, write a test.py for testing fib
module.
# touch test.py
import sys
from pathlib import Path
p = Path(__file__).parent / "fib"
sys.path.append(str(p))
from fib import fib
print(fib(10.0))
output:
$ mypy --strict test.py
test.py:10: error: Argument 1 to "fib" has incompatible type "float"; expected "int"
Acesse a Referência original 1: Acesse a Referência original 2: